Influence of Secondary Offerings on the Liquidity and Trading Activity of Stocks Outstanding

Miguel A. Acedo (1), Fco. Javier Ruiz (1) and Rafael Santamaría (2)

(1) University of La Rioja
(2) Public University of Navarra

Miguel A. Acedo
Universidad de La Rioja
Dpto. Economía y Empresa
C/ Cigüeña 60
26.004 Logroño (SPAIN)

E-mail: miguel-angel.acedo@unirioja.es Phone: +34 941299774 Fax: +34 941299393
Fco. Javier Ruiz
Universidad de La Rioja
Dpto. Economía y Empresa
C/ Cigüeña 60
26.004 Logroño (SPAIN)

E-mail: javier.ruiz@unirioja.es Phone: +34 941299383 Fax: +34 941299393
Rafael Santamaría
Universidad Pública de Navarra
Dpto. Gestión de Empresas
Campus de Arrosadía s/n
31.006 Pamplona (SPAIN)

E-mail: rafael@unavarra.es Phone: +34 948169389 Fax: +34 948169404

Influence of Secondary Offerings on the Liquidity and Trading Activity of Stocks Outstanding (*)

Abstract

This paper examines the influence of secondary offerings (SOs) on the liquidity and trading activity of stocks outstanding. The results reveal that liquidity and trading activity increase after SOs execution. We observe that the offering discount is explained by the size of the offering and its retail composition. We have also shown that changes in liquidity and trading activity are explained by the retail composition of the offering, such that the choice of ownership structure is decisive in the level of liquidity afforded by SOs. The offering discount is one of the chosen methods of attracting small-scale investors and promoting share liquidity following these operations.

KEYWORDS: secondary offerings (SOs), liquidity, trading activity, microstructure, capital structure.

JEL Classification: G14

(*) Acknowledgement:

The authors would like to thank the ERDF and the Spanish Ministry of Education and Science (SEJ2006-14809-C03-02) for financial support.

1. Introduction

A large number of studies have analysed the impact of certain operations on share liquidity and trading activity in the stock market. To mention some of the key contributions, Eckbo, Masulis and Norli (2000) examine seasoned equity offerings; Brockman and Chung (2001) repurchase tender offers; Dennis and Strickland (2003) and Menéndez and Gómez-Ansón (2003) stock splits; and Menyah and Paudyal (1996) and Farinós and Fernández (1999) takeovers ${ }^{1}$. Among the main references on the subject of initial public offerings (IPOs) we can mention Pham, Kalev and Steen (2003); Eckbo and Norli (2005); and Ellul and Pagano (2006).

One of the main purposes of IPOs is to increase share liquidity. By meeting this objective it is possible to obtain better terms for ensuring the issue of new capital and thereby increase the efficiency of future placings. However, the liquidity obtained is not entirely independent of the decisions taken by firms when designing IPOs. In regard to this, both Pham et al. (2003) and Ellul and Pagano (2006) relate the liquidity obtained to the degree of underpricing of the IPOs. Pham et al. (2003) actually claim that underpricing is the cost of the liquidity, since it is the compensation offered by the firm to attract small-scale investors that will help to generate liquidity. Thus, prior ownership structures and decisions affecting the variables or defining characteristics of the IPOs may play a decisive role in determining the nature of the relationship between liquidity and underpricing.

The results for IPOs could be extended to secondary offerings (SOs). A secondary offering, also called secondary public offering, is the public sale of a large block of outstanding shares in which one or more of a firm's stockholders sell all or a large portion of their holding. As in the case of IPOs, sellers have to present a prospectus in the stock market showing the structure of the offering (retail and institutional tranches, offer price, offer period, etc). At close of offer period, prospective buyers are notified of the outcome of their bids ${ }^{2}$. It is important to note that this kind of offering does not increase the number of stocks outstanding on the market because no new shares are released. This is the original meaning of the term. However, the name of SO it is also used to refer to follow-on offerings of new shares from a firm that has already made its IPO. In this paper, we will use the term secondary offering in its original sense only. That is, we will work with offerings representing sales of stock by shareholders who wish to decrease their positions in a firm. These are offerings in the secondary market as opposed to those made by firms to raise capital which are aimed at the primary market.

The main difference between IPOs and SOs is that prior to the IPO there are no outstanding shares. Since this can constitute a major difference, there is no reason why the effects deriving from IPOs and SOs should be identical. In fact, in an SO the previous shares outstanding in the market may affect ex post liquidity and trading activity following the execution of the offering.

[^0]Despite these considerations, as far as we are aware, there have been no previous analyses of the possible influence of SOs on the liquidity and trading activity of stocks outstanding ${ }^{3}$.

This paper therefore aims to analyse some of the issues relating to the effects of SOs on stock liquidity and trading activity. Although operations of this type do not change the number of shares outstanding, they should encourage market trading of the firm's shares and increase liquidity, since they have the opposite effect of a takeover in that they put a large block of shares on the market that were formerly held by only one or a small number of stockholders ${ }^{4}$. In this context, the first issue to be addressed is whether SOs affect liquidity and trading activity in shares outstanding and whether the effects are what might be expected from such operations. In particular, taking into account the arguments of the information-based hypothesis, the increment in the number of investors and analyst coverage of the stock, as a consequence of the increment of the shares traded, will produce an increase in the amount of information that is made public, reducing the level of informed trading and the level of asymmetric information (see Li, McInish and Wongchoti, 2005) thus narrowing the bid-ask spread. Furthermore, although there is no variation in the number of outstanding shares, the free float increases as shares previously held by major investors come into the market. This increase in free float may induce an increase on the optimal portfolios weights, if the correlation structure remains unchanged, leading to an increment in trading volume by liquidity investors.

The second issue we aim to analyse is whether the liquidity and trading activity levels following SOs are linked to the variables or characteristics that define them (relative size and retail composition). Note that the second of these variables (retail composition) is related with ownership dispersion, which is cited by some authors (Pham et al., 2003) as a means of achieving liquidity. We therefore analyse the role played by the offering discount in achieving liquidity, since, in an adverse selection environment, this could be the cost entailed in attracting uninformed investors and providing liquidity 5 .

The article is structured into five sections. Section two is devoted to a description of the database. Section three analyses the effects of SOs on the liquidity and trading activity of stocks outstanding. Section four explores the role played by the SO defining variables on changes in liquidity and trading activity and the final section presents the main conclusions of the analysis.

[^1]
2. Data base

The sample consists entirely of secondary offerings by firms listed on the Spanish continuous market from 1993 to 2005. The SIBE (Spanish Stock Market Interlinking System), or continuous market, is chosen in order to avoid problems with different trading systems. Another important reason for this choice is the greater liquidity of stock trading on this market, which provides more opportunity for arbitrage. The continuous market represents approximately 98.5% of all stock market trading in Spain.

Table A1 in the appendix lists the firms that make up the study sample and gives the main characteristics of the data. A total of 32 SOs were made over the study period (1993-2005). However, these SOs were marked by a variety of events affecting liquidity and trading activity of shares for the pre and post secondary offering periods that might distort the results of the analysis. For example, stocks that were not listed on the continuous market at any point in the observation window, offerings that were object of splits, variations in shares outstanding (new share offerings, listing of previously offered shares, capital reduction), company mergers, etc. Any secondary offering featuring one of these circumstances was eliminated from the sample. Of the 32 offerings originally considered for the study, 16 were found to be entirely free of any such circumstances.

All data relative to SOs characteristics and conditions were obtained from the records of the Comisión Nacional del Mercado de Valores (National Stock Exchange Commission) and Madrid Stock Exchange price bulletins. The remaining daily stock market data that were required (price, bid-ask spread, depth, and trading volume) were provided by the Sociedad de Bolsas (Stock Exchanges Company).

3. SOs and their effects on the liquidity and trading activity of shares outstanding

In this section we test the effects of SOs on liquidity and trading activity of shares outstanding. The variables used to measure share liquidity are bid-ask spread, relative depth and market quality index ${ }^{6}$. The bid-ask spread (S_{it}) is the average cost of simultaneously buying and selling one stock i on trading day t. It is defined as the average value of the quotient obtained by dividing the price spread by its middle price, as shown in expression [1]. The price spread in an order-driven market, like that of Spain, is calculated from the difference between the lowest price at which investors are willing to sell share i at time t^{\prime} on trading day t (the price that investors would have to pay for one share, $\mathrm{P}_{\mathrm{itt}} \mathrm{Ask}$), and the highest price at which they are willing to buy it (the price that investors would charge for one unit of this asset, $\mathrm{P}_{\mathrm{itt}}^{\mathrm{Bid}}$).

[^2]\[

$$
\begin{equation*}
\left.\mathrm{S}_{\mathrm{it}}=\sum_{\mathrm{t}^{\prime}=1}^{\mathrm{T}} \frac{\left(\frac{\mathrm{P}_{\mathrm{itt}^{\prime}}^{\mathrm{Ask}}-\mathrm{P}_{\mathrm{itt}}^{\mathrm{Bid}}}{\left(\mathrm{P}_{\mathrm{itt}}^{\mathrm{Ask}}+\mathrm{P}_{\mathrm{itt}} \mathrm{Bid}\right.}\right) / 2}{\mathrm{~B}}\right) \tag{1}
\end{equation*}
$$

\]

where T is the number of share i's price spreads during day t .
The relative depth $\left(\mathrm{RD}_{\mathrm{it}}\right)$ represents the average number of shares i available at each side of the market at the best first level prices on trading day t relative to the number of stocks outstanding ${ }^{7}$; and the market quality index $\left(\mathrm{MQI}_{\mathrm{it}}\right)$ is the ratio between the middle relative depth and the bidask spread. This can be written as follows:

$$
\begin{equation*}
\mathrm{MQI}_{\mathrm{it}}=\frac{\mathrm{RD}_{\mathrm{it}} / 2}{\mathrm{~S}_{\mathrm{it}}} \tag{2}
\end{equation*}
$$

Liquidity is certain to be enhanced when the bid-ask spread narrows and the relative depth increases or when the market quality index increases.

Given the nature of SOs, which flood the market with stock formerly held by only one or a few stockholders for corporate control purposes, it is reasonable to expect an increase in share liquidity following the execution of such operations. Portfolio selection considerations relative to the number of shares outstanding, investors and dispersion of ownership structure point towards this relationship ${ }^{8}$. The bid-ask spread can be expected to decrease while the relative depth and market quality index increase, as can be predicted by using the information-based hypothesis.

For the same reasons given above, a positive effect on trading activity is also likely. The measures used in this paper to analyse this question are relative trading volume or turnover, relative number of transactions and relative trading volume or turnover per transaction.

The relative trading volume $\left(\mathrm{RTV}_{\mathrm{it}}\right)$ or turnover reflects the number of shares ithat are traded on trading day t relative to the number of shares outstanding. The relative number of transactions $\left(\mathrm{RNT}_{\mathrm{it}}\right)$ represents how many times shares i are traded on trading day relative to the number of shares outstanding and the relative trading volume per transaction ($\mathrm{RTVT}_{\mathrm{it}}$), also named relative size or turnover per transaction, quantifies the average number of shares ithat are traded in each transaction on trading day relative to the number of stocks outstanding.

[^3]In addition to the above variables, we also consider two that are linked to price variations: return and volatility. The return (R_{it}) reflects the price variations of share i on trading day t and volatility (V_{it}) measures the rank maximum of the price variation of share i on trading day t , as shown in expression [3].

$$
\begin{equation*}
V_{i t}=\frac{P_{i t}^{\text {Max }}-P_{i t}^{\text {Min }}}{\left(P_{\text {it }}^{\text {Max }}+P_{\text {it }}^{\text {Min }}\right) / 2} \tag{3}
\end{equation*}
$$

where $P_{\mathrm{it}}^{\mathrm{Max}}$ and $\mathrm{P}_{\mathrm{it}}^{\mathrm{Min}}$ are the maximum and minimum prices of share i on trading day t .
The "opportunity window" hypothesis (Ritter, 1991; and Spiess and Affleck-Graves, 1995) and the increase in shares offered on the market, with the subsequent price pressure, "price pressure" hypothesis, (Loderer, Cooney and Van Drunen, 1991; and Corwin, 2003), give reason to predict a reduction in price variation following the execution of SOs.

This study bases the analysis of these issues on the variables that measure liquidity, trading activity and price variations before and after offerings, focusing specifically on the pre secondary offering period, which is the 125 trading days preceding the authorisation of the offering (from day -135 to day -11 , that is approximately 6 months before the secondary offering), and in the post secondary offering period, which is the 125 trading days following the execution of the offering (from day 11 to day 135, that is approximately 6 months after the secondary offering). By comparing these two periods we should be able to measure the effect of offerings on the variables under analysis. The purpose of the exclusion period, that is, the 10 trading days prior to the authorisation and the 10 trading days following the execution of the offering, is to prevent contamination of the pre and post offering periods by effects solely due to the authorisation and execution of the offering ${ }^{9}$.

To measure the impact of SOs on the variables in our analysis we use the following system of equations:

$$
\begin{equation*}
\mathrm{X}_{\mathrm{it}}=\beta_{\mathrm{i} 0}+\beta_{\mathrm{i} 1} . \mathrm{D}_{\mathrm{t}}+\varepsilon_{\mathrm{it}} \quad \mathrm{i}=1, \ldots, 16 \tag{4}
\end{equation*}
$$

where X_{it} is the variable X for firm i on day t and D_{t} is the dummy variable for the post secondary offering period (from day 11 to 135).

The regression coefficient $\beta_{i 1}$ of the dummy variable for the post secondary offering period represents the average variation of the variable X for firm i after the execution of the secondary offering and therefore measures the impact of the offering on this variable. We use the Generalized Method of Moments (GMM) as the system estimation method. GMM is a robust estimator in that it does not require information of the exact distribution of the disturbances and can be made robust to heteroscedasticity and/or autocorrelation of unknown form. Since we are

[^4]interested in knowing the average effect of SOs on liquidity and trading activity, the null hypothesis is that the means of $\beta_{\mathrm{i} 1}$ are equal to zero, that is $\mathrm{H}_{0}:\left(\frac{1}{16} \cdot \sum_{\mathrm{i}=1}^{16} \beta_{\mathrm{i} 1}\right)=0$.

Table 1 presents the results of the system of equations and shows the average value of the estimated coefficients $\beta_{i 0}$ and $\beta_{i 1}$, as well as the p-values of the Wald test of the null hypothesis that the average value is equal to zero. Turning to analysis of the average value of the coefficient $\beta_{i 1}$, the data reveal that all the changes in these variables after the execution of the offerings have the expected signs. A significant increase in liquidity is shown by the narrowing of the bid-ask spread, and the increase in the relative depth and also in the market quality index. The results reveal the liquidity injected into the market by these operations. A significant increase in trading activity is also shown by the relative number of transactions, relative trading volume per transaction and as a consequence an increase in the relative trading volume ratio which confirms the fact that these SOs stimulate trading activity in this market. Finally, when it comes to price variations, the data reveal a significant decrease in returns and volatility, which is consistent with the "opportunity window" (Ritter, 1991; Spiess and Affleck-Graves, 1995) and "price pressure" hypotheses (Loderer, Cooney and Van Drunen, 1991; Corwin, 2003). Graphs 1, 2 and 3 show the impact of these operations on the main variables driving these results, that is, the market quality index, the relative trading volume and the return. The trend lines before and after the operations clearly reveal the increase in liquidity and trading activity and the decrease in returns.

[Insert Table 1]

[Insert Graphs 1, 2 and 3]
Nevertheless, given that the evolution of these variables for each firm during the pre and post offering periods may be linked to the market trend, we isolate the market effect on these variables in our analysis by using the following system of equations:

$$
\begin{equation*}
\mathrm{X}_{\mathrm{it}}=\beta_{\mathrm{i} 0}+\beta_{\mathrm{i} 1} . \mathrm{D}_{\mathrm{t}}+\beta_{\mathrm{i} 2} . \overline{\mathrm{X}}_{\mathrm{t}}+\varepsilon_{\mathrm{it}} \quad \mathrm{i}=1, \ldots, 16 \tag{5}
\end{equation*}
$$

where $X_{i t}$ is the variable X for firm i on day t, D_{t} is the dummy variable for the post secondary offering period (from day 11 to 135) and \bar{X}_{t} is the average value of the variable X on day t for the rest of firms that form the market.

The regression coefficient $\beta_{\mathrm{i} 1}$ of the dummy variable for the post secondary offering period represents the average variation of the variable X for firm i after the execution of the secondary offering without the market effect and therefore measures the impact of the offering on this variable excluding the market effect. We also use the Generalized Method of Moments (GMM) as the system estimation method and the null hypothesis is that the means of $\beta_{i 1}$ are equal to zero, that is $\mathrm{H}_{0}:\left(\frac{1}{16} \cdot \sum_{\mathrm{i}=1}^{16} \beta_{\mathrm{i} 1}\right)=0$.

Table 2 presents the results of the system of equations. In particular, we show the averages of the estimated coefficients $\beta_{\mathrm{i} 0}, \beta_{\mathrm{i} 1}$ and $\beta_{\mathrm{i} 2}$, as well as the p -values of the Wald tests for the null
hypothesis that any of these averages is equal to zero. As can be seen, all the variables present a significantly positive relationship with the market, clearly demonstrating the need to eliminate this effect in order to determine whether the observed findings are caused by the SOs themselves or by the market state in which the latter tend to take place. Focussing on the analysis of the mean value of coefficient $\beta_{i 1}$, the data again reveal a significant increase in liquidity shown in the narrowing of the bid-ask spread, as well an increase in the market quality index (although significant only at the 10% level). The above observed increase in relative depth, however, appears to be due more to market conditions than to the impact of the operations themselves. The trading activity, furthermore, shows a significant increase, which is reflected in the relative number of transactions, the relative trading volume per transaction, and the relative trading volume. These results provide evidence to support that SOs produce an increase in share liquidity and trading activity that is directly attributable to these operations. A final observation is that there are no significant changes in volatility but, as expected, there is a significant decrease in return ${ }^{10}$.

[Insert Table 2]

To increase the robustness of the findings, the same analysis was repeated using pre and post secondary offering periods of 60 trading days, instead of the 125 used in the analysis described above with basically the same results, that is, a narrowing of the bid-ask spread and an increase in the market quality index. In this case, it was also possible to observe a significant increase in the relative depth. Since this effect was not observed for longer pre and post secondary offering periods, it can be assumed to be an exclusively short-term effect that later fades. The effect on the trading volume was also very similar. In particular, not only the relative number of transactions, but also the relative trading volume per transaction and the relative trading volume present a significant increase. Finally, as for the full sample period, it was possible to observe a significant decrease in return and no effect on volatility.

4. Characteristics of the SOs and liquidity and trading activity of shares outstanding

The analysis presented in the above section focused on the overall effects of SOs. Arguably, however, the effects of these operations on liquidity and trading activity in shares outstanding will differ as a function of their size and their distribution structure (retail and institutional tranches) ${ }^{11}$. The relative size argument seems plausible, in view of the fact that, if these operations have an impact on liquidity and trading activity in shares outstanding, the larger the operation the greater the impact to be expected. Nevertheless, arguments based on the distribution structure, while less direct, appear just as convincing. Amihud and Mendelson

[^5](1986) contribute to the debate by demonstrating the existence of an inverse relationship between bid-ask spread and concentration of ownership, while, more specifically, Bhide (1993) and Holmstrom y Tirole (1993) show that a more disperse ownership structure can provide greater liquidity, which can be achieved with a larger retail composition of the offering. Pham et al. (2003) also show that liquidity is directly linked to dispersion of ownership. According to these authors, liquidity is crucial to ensure future share offerings. If the initial owners keep a large part of a firm's shares, they should improve liquidity by increasing the percentage of individual investors and thereby creating a more disperse structure. This also helps to prevent potential hostile takeovers (Shleifer and Wishny, 1986).

As noted earlier, however, both Pham et al. (2003) and Ellul and Pagano (2006) relate achieved liquidity to the degree of underpricing. Pham et al. (2003) link the degree of underpricing to the cost of creating incentives to attract small-scale investors in order to increase the liquidity of the stock. We therefore aim to introduce the offering discount variable as a measure of underpricing in order to explain variations in liquidity and trading activity following SOs.

The first step of this approach was to run a regression to examine relative size and retail composition, that is, the variables that define the offering, for their explanatory capacity for the offering discount, as shown in the following (cross-section) specification:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{i}}=\lambda_{0}+\lambda_{1} \cdot \mathrm{RS}_{\mathrm{i}}+\lambda_{2} \cdot \mathrm{RC}_{\mathrm{i}}+\varepsilon_{\mathrm{i}} \tag{6}
\end{equation*}
$$

where D_{i} is the discount of offering i and reflects the difference between the market average price of share i on the days the operation is authorized and executed and the average price of the offering relative to the market average price of share i on the days the operation is authorized and executed, RS_{i} is the relative size of offering i and represents the number of shares i offered relative to the number of shares i outstanding, and RC_{i} is the retail composition of offering i and reflects the number of shares i offered in the retail tranche relative to the number of shares i offered.

Given the limited number of observations, the bootstrap procedure was used to obtain the average values of the coefficients and the simulated p -values. The actual procedure was to perform 1,000 regressions with 16 observations per regression drawn with replacement. The critical values were obtained using the standard bootstrap percentile test procedure, which retains the essentially non-parametric nature of the bootstrap approach without imposing parametric assumptions on the distribution.

The results (see Table 3) clearly allow us to conclude that the selected discount level in SOs has both characteristics. Logically, the larger the operation, the higher the discount offered to ensure its success. Moreover, in line with the arguments put forward by Pham et al. (2003), a higher discount is more likely in SOs when the retail composition of the offering for individual shareholders is bigger, in order to compensate them for the higher adverse selection costs they face and increase the appeal of the shares. This appears to be direct evidence of the fact that raising the percentage of individual shareholders in order to increase share liquidity entails an explicit cost linked to the designated percentage discount for the offering.

Given the high level of correlation observed between the discount of offer, D_{i}, and the defining characteristics of the operation, RS_{i} and RC_{i}, the residual of the regression, RD_{i}, will be used to proceed towards the analysis of the explanatory capacity provided by these variables for variations in liquidity and trading activity following SOs. Formally, we propose the (crosssection) specification, also estimated using the bootstrap method with 1,000 regressions of 16 observations each.

$$
\begin{equation*}
\beta_{\mathrm{i} 1}=\delta_{0}+\delta_{1} \cdot \mathrm{RS}_{\mathrm{i}}+\delta_{2} \cdot \mathrm{RC}_{\mathrm{i}}+\delta_{3} \cdot \mathrm{RD}_{\mathrm{i}}+\varepsilon_{\mathrm{i}} \tag{7}
\end{equation*}
$$

where $\beta_{i 1}$ is the regression coefficient of equation [5], which represents average variation of the variable X for firm i after the execution of the secondary offering without the market effect, and RS_{i} and RC_{i} are the variables defined and used in the regression of equation [6] and RD_{i} is the residual also obtained from equation [6].

These results are summarized in Table 4. The data reveal that, in overall terms, retail composition (RC), is the variable that provides higher explanatory capacity to explain variations in liquidity and trading activity following SOs, although the effect is less noticeable than suggested by other studies on IPOs. Probably, the effort to achieve liquidity to maximize the success of future placings is greater in IPOs than in SOs. As noted earlier, the variable with higher impact is RC and even then not for all the variables relating to these measures. As far as liquidity is concerned, the effect on the bid-ask spread, despite presenting the expected sign, does not prove significant, while the effect on relative depth is more noteworthy. As a result, we are able to observe the expected significant effects on the market quality index variable. In terms of trading activity, while it is possible to observe a significant increase in the relative number of transactions, this is offset by a reduction in the relative trading volume per transaction, due to the increase in the percentage of individual holdings. Thus, the overall effect on relative trading volume is not significant at the standard levels.

[Insert Table 4]

The relative size of the offering (RS), does not appear to show any explanatory capacity for the changes in the variables relating to share liquidity and trading activity shares following SOs, with the exception of an increase in the relative trading volume per transaction. This is a significant finding since it suggests that the effects on liquidity and trading activity are not so much due to the percentage of shares offered as to the way they are distributed. This is in quite close keeping with recent findings for IPOs, underpricing, ownership structure and liquidity. Moreover, apart from its effect in attracting small-scale investors, that is observed in the significant increase on the relative number of transactions, the explanatory capacity of the discount level (RD) is merely testimonial. This further justifies the stress laid earlier on the fact that the role played by discount is basically only as the cost required to attract small-scale investors and thereby increase liquidity.

5. Conclusions

In this paper we have analysed the influence of the SOs on the liquidity and the trading activity of shares outstanding, which, given the lack of previous studies on the topic, constitutes a novel aspect of this field of research. Our findings are based on an analysis of the variations in the variables that measure the liquidity, trading activity and price variations before and after offerings.

According to the results obtained, SOs cause an increase in the liquidity and trading activity of the shares being offered, while bringing about a decrease in price variations. The narrowing of the bid-ask spread, reduction in returns and increase in market quality index, relative trading volume, relative number of transactions and relative trading volume per transaction all help to confirm this finding.

In addition, the discount to SOs has been found to be explained by the offering strategy in terms of relative size and retail composition.

The fact that discount is found to be directly linked to the size of the offering is hardly surprising, since its purpose is to maximize the success of the operation. Moreover, it is also directly linked to the percentage of individual shareholders (retail shareholders), a finding clearly consistent with the conclusions presented by authors such as Pham et al. (2003), who relate underpricing with the cost of obtaining liquidity to create incentives to attract small-scale investors.

Finally, the variations in liquidity and trading activity observed after SOs are found to bear some relation to the specific characteristics of the operations, particularly the type of ownership structure. This may lend some support, albeit less than in the case of IPOs, to the arguments put forward in recent research on SOs, which show that the liquidity following these operations is basically achieved by attracting small-scale investors, who are quick to respond to underpricing. Surprisingly, the size of the offering contributes little further explanatory capacity for the changes in liquidity observed after SOs, despite the fact that it might be reasonable to link the percentage of ownership offered with the ex post level of liquidity. That part of the discount that remains unexplained by the size of the offering and the percentage of retail shareholders also lacks any significant capacity to explain these variations in liquidity and trading activity.

Appendix

[Insert Table A1]

References

AGGARWAL, R. and P. RIVOLI (1990): "Fads in the Initial Public Offering Market", Journal of Management, vol. 19, pp. 45-57.

AMIHUD, Y. and H. MENDELSON (1986): "Asset Pricing and Bid-Ask Spread", Journal of Financial Markets, vol. 5, pp. 31-56.

BHIDE, A. (1993): "The Hidden Costs of Stock Market Liquidity", Journal of Financial Economics, vol. 34, pp. 31-51.
BROCKMAN, P. and D.Y. CHUNG (2001): "Managerial Timing and Corporate Liquidity: Evidence from Actual Share Repurchase", Journal of Financial Economics, vol. 61, no. 3, pp. 417-448.

CLARKE, J.; DUNBAR, C. and K. KAHLE (2004): "The Long-run Performance of Secondary Equity Issues: A Test of the Windows of Opportunity Hypothesis", Journal of Business, vol. 77, pp. 575-603.

CORWIN, S.A. (2003): "The Determinants of Underpricing for Seasoned Equity Offers", Journal of Finance, vol. 58, no. 5, pp. 2249-2279.

CORWIN, S.A.; HARRIS, J.H. and M.L. LIPSON (2004): "The Development of Secondary Market Liquidity for NYSE-listed IPOs", Journal of Finance, vol. 59, no. 5, pp. 23392373.

DENNIS, P. and D. STRICKLAND (2003): "The Effect of Stock Splits on Liquidity and Excess Returns: Evidence from Shareholder Ownership Composition", Journal of Financial Research, vol. 26, no. 3, pp. 355-370.
ECKBO, B.E. and O. NORLI (2005): "Liquidity Risk, Leverage and Long-Run IPO Returns", Journal of Corporate Finance: Contracting, Governance and Organization, vol. 11, no. 1, pp. 1-35.
ECKBO, B.E.; MASULIS, R.W. and O. NORLI (2000): "Seasoned Public Offerings: Resolution of the New Issues Puzzle", Journal of Financial Economics, vol. 56, pp. 251-291.
ELLUL, A. and M. PAGANO (2006): "IPO Underpricing and After-Market Liquidity", Review of Financial Studies, vol. 19, no. 2, pp. 381-421.
FARINÓS, J.E. (2001): "Rendimientos anormales de las OPV en España", Investigaciones Económicas, vol. 25, no. 2, pp. 417-437.
FARINÓS, J.E. y FERNÁNDEZ, M. (1999): "La incidencia de una OPA sobre la actividad negociadora y la estimación del riesgo sistemático de las empresas objetivo", Revista Española de Financiación y Contabilidad, vol. extraordinario, no. 100, pp. 381-401.
FREY, S. and J. GRAMMING (2006): "Liquidity Supply and Adverse Selection in a Pure Limit Order Book Market", Empirical Economics, vol. 3, no. 4, pp. 1007-1033.
HOLMSTROM, B. and J. TIROLE (1993): "Market Liquidity and Performance Monitoring", Journal of Political Economy, vol. 101, pp. 678-709.

KRIGMAN, L.; SHAW, W.H. and K.L. WOMACK (1999): "The Persistence of IPO Mispricing and the Predictive Power of Flipping", Journal of Finance, vol. 54, pp. 1015-1044.
LI, M; MCINISH, T. and U. WONGCHOTI (2005): "Asymmetric information in the IPO aftermarket", The Financial Review, vol. 4, no. 2, pp. 131-153.

LODERER, C.; COONEY, J.W. and L.D. VAN DRUNEN (1991): "The Price Elasticity of Demand for Common Stock", Journal of Finance, vol. 2, pp. 621-651.

MENÉNDEZ, S. y GÓMEZ-ANSÓN, S. (2003): "Stock Splits: Motivations and Valuation Effects in the Spanish Market", Investigaciones Económicas, vol. 27, no. 3, pp. 459490.

MENYAH, K. and K. PAUDYAL (1996): "The Determinants and Dynamics of Bid-Ask Spreads on the London Stock Exchange", Journal of Financial Research, vol. 19, no. 3, pp. 377-394.
MILLER, R.E. and F.K. REILLY (1987): "An Examination of Mispricing, Returns and Uncertainty for Initial Public Offerings", Financial Management, vol. 16, pp. 33-38.
O'HARA, M. (1995): Market Microstructure Theory, Blackwell.
PHAM, P.K.; KALEV, P.S. and A.B. STEEN (2003): "Underpricing, Stock Allocation, Ownership Structure and Post-Listing Liquidity of Newly Listed Firms", Journal of Banking and Finance, vol. 27, no. 5, pp. 919-947.

RITTER, J. (1991): "The Long Run Performance of Initial Public Offering", Journal of Finance, vol. 42, pp. 365-394.

SHLEIFER, A. and R. WISHNY (1986): "Large Shareholders and Corporate Control", Journal of Political Economy, vol. 94, pp. 461-488.

SPIESS, D.K. and J. AFFLECK-GRAVES (1995): "Underperformance in Long Run Stock Returns Following Seasoned Equity Offerings", Journal of Financial Economics, vol. 38, pp. 243-267.

ZHENG, S.; OGDEN, J.P. and F. JEN (2005): "Pursuing Value through Liquidity in IPOs: Underpricing, Share Retention, Lockup and Trading Volume Relationships", Review of Quantitative Finance and Accounting, vol. 25, pp. 293-312.

Table 1.- Changes in liquidity, trading activity and price variations after the execution of secondary offerings

Dependent variable	Regression coefficients	
	$\beta_{\text {i } 0}$	$\beta_{i 1}$
	Average value (p-value)	Average value (p-value)
Liquidity		
Bid-ask spread	$\begin{aligned} & 0.00464 \\ & (0.000) \end{aligned}$	$\begin{gathered} -0.00091 \\ (0.000) \end{gathered}$
Relative depth	$\begin{gathered} 5.59 \mathrm{E}-05 \\ (0.000) \end{gathered}$	$\begin{gathered} 5.49 \mathrm{E}-06 \\ (0.000) \end{gathered}$
Market quality index	$\begin{aligned} & 0.01053 \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.00230 \\ (0.000) \end{gathered}$
Trading activity		
Relative trading volume	$\begin{aligned} & 0.00206 \\ & (0.000) \end{aligned}$	$\begin{gathered} 0.00058 \\ (0.000) \end{gathered}$
Relative number of transactions	$\begin{gathered} 2.69 \mathrm{E}-06 \\ (0.000) \end{gathered}$	$\begin{gathered} 8.30 \mathrm{E}-07 \\ (0.000) \end{gathered}$
Relative trading volume per transaction	$\begin{gathered} 8.66 \mathrm{E}-06 \\ (0.000) \end{gathered}$	$\begin{gathered} 1.59 \mathrm{E}-06 \\ (0.001) \end{gathered}$
Price variations		
Return	$\begin{gathered} 0.00126 \\ (0.000) \end{gathered}$	$\begin{gathered} -0.00108 \\ (0.077) \end{gathered}$
Volatility	$\begin{gathered} 0.02134 \\ (0.000) \end{gathered}$	$\begin{gathered} -0.00108 \\ (0.031) \end{gathered}$

For each variable an equation system is estimated using Generalized Method of Moments (GMM):

$$
\begin{equation*}
\mathrm{X}_{\mathrm{it}}=\beta_{\mathrm{i} 0}+\beta_{\mathrm{i} 1} . \mathrm{D}_{\mathrm{t}}+\varepsilon_{\mathrm{it}} \quad \mathrm{i}=1, \ldots, 16 \tag{4}
\end{equation*}
$$

where $X_{i t}$ is the variable X for firm i on day t and D_{t} is the dummy variable for the post secondary offering period (from day 11 to 135). The regression coefficient $\beta_{\mathrm{i} 1}$ of the dummy variable for the post secondary offering period represents the average variation of the variable X for firm i after the execution of the secondary offering and therefore measures the impact of the offering on this variable.

The coefficients shown in the table are the average values of the coefficients of the 16 regressions, as well as the p -values of the Wald test of the null hypothesis that the average value is equal to zero, that is $\mathrm{H}_{0}:\left(\frac{1}{16} \cdot \sum_{\mathrm{i}=1}^{16} \beta_{\mathrm{ik}}\right)=0$, for $\mathrm{K}=0$ and 1 , respectively. The sample is composed of 16 firms that make a secondary offering over the period 1993-2005.

Table 2.- Changes in liquidity, trading activity and price variations after the execution of secondary offerings excluding the market effect

Dependent variable	Regression coefficients		
		$\beta_{\mathrm{i} 0}$	$\beta_{\mathrm{i} 1}$

For each variable an equation system is estimated using Generalized Method of Moments (GMM):

$$
\begin{equation*}
\mathrm{X}_{\mathrm{it}}=\beta_{\mathrm{i} 0}+\beta_{\mathrm{i} 1} \cdot \mathrm{D}_{\mathrm{t}}+\beta_{\mathrm{i} 2} \cdot \overline{\mathrm{X}}_{\mathrm{t}}+\varepsilon_{\mathrm{it}} \quad \mathrm{i}=1, \ldots, 16 \tag{5}
\end{equation*}
$$

where $X_{i t}$ is the variable X for firm i on day t, D_{t} is the dummy variable for the post secondary offering period (from day 11 to 135) and X_{t} is the average value of the variable X on day t for the remainder of the firms in the market. The regression coefficient $\beta_{\mathrm{i} 1}$ of the dummy variable for the post secondary offering period represents the average variation of the variable X for firm i after the execution of the secondary offering without the market effect and therefore measures the impact of the offering on this variable excluding the market effect.

The coefficients shown in the table are the average values of the coefficients of the 16 regressions, as well as the p-values of the Wald test of the null hypothesis that the average value is equal to zero, that is $\mathrm{H}_{0}:\left(\frac{1}{16} \cdot \sum_{\mathrm{i}=1}^{16} \beta_{\mathrm{ik}}\right)=0$, for $\mathrm{K}=0,1$ and 2, respectively. The sample is composed of 16 firms that make a secondary offering over the period 1993-2005.

Table 3.- Offering discount: relation to relative size and retail composition of the offerings

Dependent variable	Regression coefficients		
	λ_{0}	λ_{1}	λ_{2}
	Average value (p-value)	Average value (p-value)	Average value (p-value)
	-0.01317	0.16564 (0.158)	0.04287
		(0.004)	(0.002)

Average results from the 1,000 cross-sectional regressions:

$$
\begin{equation*}
\mathrm{D}_{\mathrm{i}}=\lambda_{0}+\lambda_{1} \cdot \mathrm{RS}_{\mathrm{i}}+\lambda_{2} \cdot \mathrm{RC}_{\mathrm{i}}+\varepsilon_{\mathrm{i}} \tag{6}
\end{equation*}
$$

where D_{i} is the discount of the offering i defined as the ratio of the difference between the market average price of share i on the days of the authorization and market operation and the offering average price to the market average price of share i on the days of the authorization and market operation, RS_{i} is the relative size of the offering i defined as the ratio of the numbers of shares i offered to the number of shares i outstanding and RC_{i} is the retail composition of the offering i defined as the ratio of the number of shares i offered in the retail tranche to the number shares i offered.

The coefficients shown in the table are the average values of the coefficients of 1,000 bootstrap regressions with 16 observations per regression extracted with replacement, as well as the simulated p-values of the 1,000 bootstrap regressions. The sample is composed of 16 secondary offerings over the period 1993-2005.

Table 4.- Changes in liquidity and trading activity after the execution of secondary offerings: relation to relative size, retail composition and residual discount of the offerings

Dependent variable	Regression coefficients			
		δ_{0}	δ_{1}	δ_{2}

Average results from the 1,000 cross-sectional regressions for each variable:

$$
\begin{equation*}
\beta_{\mathrm{i} 1}=\delta_{0}+\delta_{1} \cdot \mathrm{RS}_{\mathrm{i}}+\delta_{2} \cdot \mathrm{RC}_{\mathrm{i}}+\delta_{3} \cdot \mathrm{RD}_{\mathrm{i}}+\varepsilon_{\mathrm{i}} \tag{7}
\end{equation*}
$$

where $\beta_{i 1}$ is the regression coefficient of equation [5] in Table 2, which represents the average variation of the variable X for firm i after secondary offering execution without the market effect, RS_{i} is the relative size of offering i, defined as the ratio of the number of shares i offered to the number of shares i outstanding, RC_{i} is the retail composition of offering i defined as the ratio of the number of shares i offered in the retail tranche to the number shares i offered and $R D_{i}$ is the residual discount of offering i defined as the residual from the regression of the offering discount variable using $R S_{i}$ and RC_{i} as explanatory variables.

The coefficients shown in the table are the average values of the coefficients of 1,000 bootstrap regressions with 16 observations per regression extracted with replacement, as well as the simulated p-values of the 1,000 bootstrap regressions. The sample is composed of 16 firms that make a secondary offering over the period 1993-2005.

Table A1.- Sample of secondary offerings in Spain (1993-2005)

Offered share	Year	Offered shareholder	Authorization date	Market operation date	Number of sale shares
Repsol	1993	Instituto Nacional de Hidrocarburos	10/03/93	31/03/93	40,000,000
Argentaria	1993	Soc. Est. de Patrimonio I	22/10/93	17/11/93	29,945,455
Aumar	1994	Bco. Central Hispanoamericano	10/03/94	28/03/94	8,250,000
Fcc	1994	Several	15/03/94	30/03/94	3,000,000
Endesa	1994	Teneo	03/05/94	01/06/94	22,609,183
Banesto (1)	1994	Atisa	01/12/94	28/12/94	38,950,156
Asturiana del Zinc (1)	1994	Corp. Industrial y Financiera Banesto	13/12/94	19/12/94	8,911,047
Mapfre Vida (1)	1995	Corp. Mapfre	19/01/95	09/02/95	1,715,200
Repsol	1995	Instituto Nacional de Hidrocarburos	17/03/95	11/04/95	57,000,000
Gines Navarro (1)	1995	Several	20/06/95	10/07/95	5,600,000
Telefónica	1995	Soc. Est. de Patrimonio II	07/09/95	03/10/95	112,085,400
Repsol	1996	Soc. Est. de Partic. Industriales (Sepi)	16/01/96	06/02/96	33,000,000
Argentaria	1996	Soc. Est. de Patrimonio I	23/02/96	26/03/96	28,670,422
Global Stell Wire (1)	1996	Socten Auxiliar	12/11/96	28/11/96	10,708,531
Gas Natural SDG	1996	Soc. Est. de Partic. Industriales (Sepi)	21/11/96	03/12/96	1,423,520
Telefónica (1)	1997	Soc. Est. de Partic. Patrimoniales (Seppa)	17/01/97	18/02/97	191,019,467
Repsol	1997	Soc. Est. de Partic. Industriales (Sepi)	04/04/97	29/04/97	30,002,859
Catalana de Occidente (1)	1997	Catalana de Occidente	07/04/97	22/04/97	2,637,257
Faes (1)	1997	Several	10/07/97	23/07/97	2,400,149
Endesa (1)	1997	Soc. Est. de Partic. Industriales (Sepi)	23/09/97	21/10/97	260,005,599
Argentaria (1)	1998	Soc. Est. de Partic. Patrimoniales (Seppa)	23/01/98	17/02/98	35,764,129
Vidriera Leonesa (1)	1998	Vista Desarroyo and RBS Trus Bank	19/02/98	25/02/98	1,211,903
Tabacalera (1)	1998	Soc. Est. de Partic. Patrimoniales (Seppa)	08/04/98	28/04/98	96,188,092
Koipe (1)	1998	Several	30/04/98	07/05/98	1,828,758
Endesa (1)	1998	Soc. Est. de Partic. Industriales (Sepi)	14/05/98	09/06/98	332,200,112
Bodegas y Bebidas	1999	Corp. de Alimentación y Bebidas	18/03/99	26/03/99	4,445,631
Tele Pizza (1)	1999	Transeuropean Research Traders	25/10/99	26/10/99	53,354,089
Amadeus (1)	2000	Several	19/05/00	24/05/00	75,000,000
Logista	2000	Several	30/06/00	18/07/00	16,556,403
Grupo Empresarial Ence	2001	Soc. Est. de Partic. Industriales (Sepi)	29/06//01	10/07/01	8,152,949
Zeltia (1)	2002	Zeltia	10/05/02	21/05/02	72,665
Zeltia	2003	Zeltia	06/03/03	20/03/03	136,225
Red Eléctrica Española	2003	Endesa and others	18/06/03	18/06/03	37,875,600

[^6]
Graph 1.- Market quality index around secondary offerings

Graph 2.- Relative trading volume around secondary offerings

Graph 3.- Return around secondary offerings

[^0]: ${ }^{1}$ Except for Farinós and Fernández (1999), the rest of the literature on takeovers focuses on the announcement rather than the execution of the operation.
 2 These features constitute the distinction between an SO and a block trade. Block trading, usually between institutional investors, takes place in a special market segment to prevent major price effects.

[^1]: 3 The only existing studies check for abnormal negative returns following this type of operations (Farinós, 2001; and Clarke, Dunbar and Kahle, 2004).
 4 Farinós and Fernández (1999) obtain that takeovers reduce liquidity and trading activity.
 ${ }^{5}$ Several explanations for offering underpricing are based on the theory of information asymmetries. In particular, uninformed investors must incur some additional cost to collect information and therefore will not be induced to participate unless a higher degree of discount is offered. See O'Hara (1995) for an overview of the theoretical framework.

[^2]: 6 The nature of the data for this study obliged us to use the usual liquidity measures. Intraday data, however, would allow the use of more sophisticated liquidity measures (see Frey and Grammig, 2006).

[^3]: 7 Note that in the study sample the number of shares outstanding may differ considerably across firms that are the object of a secondary offering. To keep the data comparable, therefore, we take relative values, dividing by the number of stocks outstanding. The trading volume, number of transactions and trading volume per transaction are treated in the same way.
 8 Note that, although, theoretically, the number of stocks outstanding on the market after the offering is not increased, because no new shares are released, in reality there will be a higher number of stocks on the market that could be bought or sold (the free float increases) , as well as a higher number of investors and a more dispersed ownership structure.

[^4]: 9 See Miller and Reilly (1987), Aggarwal and Rivoli (1990), Krigman, Shaw and Womack (1999), Pham et al. (2003), Corwin, Harris and Lipson (2004) and Zheng, Ogden and Jen, (2005) in the case of IPOs.

[^5]: 10 Note that the relative depth and the volatility present signs opposite to what was expected, although the values are not significant.
 11 Note that in this type of operations the issuer of the SO defines the ownership structure of the offering through the percentage of shares offered to the retail (small investors) and institutional (institutional investors) tranches.

[^6]: (1) denote that the offering was eliminated from the study. Although the original sample comprised 32 SOs over the period 1993-2005, the final sample is formed by 16 SOs that were free of any problems relating to the liquidity and trading activity of shares during the pre and post secondary offering periods that might distort the results of the analysis.

